Papers
Topics
Authors
Recent
2000 character limit reached

Arithmetic Levi-Civita connection

Published 8 Aug 2017 in math.NT | (1708.02567v3)

Abstract: This paper is part of a series of papers where an arithmetic analogue of classical differential geometry is being developed. In this arithmetic differential geometry functions are replaced by integer numbers, derivations are replaced by Fermat quotient operators, and connections (respectively curvature) are replaced by certain adelic (respectively global) objects attached to symmetric matrices with integral coefficients. Previous papers were devoted to an arithmetic analogue of the Chern connection. The present paper is devoted to an arithmetic analogue of the Levi-Civita connection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.