Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Binaries: Encoding Semantic-Rich Cues for Efficient Textual-Visual Cross Retrieval (1708.02531v1)

Published 8 Aug 2017 in cs.CV and cs.AI

Abstract: Cross-modal hashing is usually regarded as an effective technique for large-scale textual-visual cross retrieval, where data from different modalities are mapped into a shared Hamming space for matching. Most of the traditional textual-visual binary encoding methods only consider holistic image representations and fail to model descriptive sentences. This renders existing methods inappropriate to handle the rich semantics of informative cross-modal data for quality textual-visual search tasks. To address the problem of hashing cross-modal data with semantic-rich cues, in this paper, a novel integrated deep architecture is developed to effectively encode the detailed semantics of informative images and long descriptive sentences, named as Textual-Visual Deep Binaries (TVDB). In particular, region-based convolutional networks with long short-term memory units are introduced to fully explore image regional details while semantic cues of sentences are modeled by a text convolutional network. Additionally, we propose a stochastic batch-wise training routine, where high-quality binary codes and deep encoding functions are efficiently optimized in an alternating manner. Experiments are conducted on three multimedia datasets, i.e. Microsoft COCO, IAPR TC-12, and INRIA Web Queries, where the proposed TVDB model significantly outperforms state-of-the-art binary coding methods in the task of cross-modal retrieval.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuming Shen (18 papers)
  2. Li Liu (311 papers)
  3. Ling Shao (244 papers)
  4. Jingkuan Song (115 papers)
Citations (48)