Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

SU(2) graph invariants, Regge actions and polytopes (1708.01727v3)

Published 5 Aug 2017 in gr-qc, hep-th, math-ph, and math.MP

Abstract: We revisit the the large spin asymptotics of 15j symbols in terms of cosines of the 4d Euclidean Regge action, as derived by Barrett and collaborators using a saddle point approximation. We bring it closer to the perspective of area-angle Regge calculus and twisted geometries, and compute explicitly the Hessian and phase offsets. We then extend it to more general SU(2) graph invariants, showing that saddle points still exist and have a similar structure. For graphs dual to 4d polytopes we find again two distinct saddle points leading to a cosine asymptotic formula, however a conformal shape-mismatch is allowed by these configurations, and the asymptotic action is thus a generalisation of the Regge action. The allowed mismatch correspond to angle-matched twisted geometries, 3d polyhedral tessellations with adjacent faces matching areas and 2d angles, but not their diagonals. We study these geometries, identify the relevant subsets corresponding to 3d Regge data and flat polytope data, and discuss the corresponding Regge actions emerging in the asymptotics. Finally, we also provide the first numerical confirmation of the large spin asymptotics of the 15j symbol. We show that the agreement is accurate to the per cent level already at spins of order 10, and the next-to-leading order oscillates with the same frequency and same global phase.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.