Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Associations among Image Assessments as Cost Functions in Linear Decomposition: MSE, SSIM, and Correlation Coefficient (1708.01541v1)

Published 4 Aug 2017 in cs.CV

Abstract: The traditional methods of image assessment, such as mean squared error (MSE), signal-to-noise ratio (SNR), and Peak signal-to-noise ratio (PSNR), are all based on the absolute error of images. Pearson's inner-product correlation coefficient (PCC) is also usually used to measure the similarity between images. Structural similarity (SSIM) index is another important measurement which has been shown to be more effective in the human vision system (HVS). Although there are many essential differences among these image assessments, some important associations among them as cost functions in linear decomposition are discussed in this paper. Firstly, the selected bases from a basis set for a target vector are the same in the linear decomposition schemes with different cost functions MSE, SSIM, and PCC. Moreover, for a target vector, the ratio of the corresponding affine parameters in the MSE-based linear decomposition scheme and the SSIM-based scheme is a constant, which is just the value of PCC between the target vector and its estimated vector.

Citations (5)

Summary

We haven't generated a summary for this paper yet.