Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DoKnowMe: Towards a Domain Knowledge-driven Methodology for Performance Evaluation (1708.01419v1)

Published 4 Aug 2017 in cs.DC and cs.PF

Abstract: Software engineering considers performance evaluation to be one of the key portions of software quality assurance. Unfortunately, there seems to be a lack of standard methodologies for performance evaluation even in the scope of experimental computer science. Inspired by the concept of "instantiation" in object-oriented programming, we distinguish the generic performance evaluation logic from the distributed and ad-hoc relevant studies, and develop an abstract evaluation methodology (by analogy of "class") we name Domain Knowledge-driven Methodology (DoKnowMe). By replacing five predefined domain-specific knowledge artefacts, DoKnowMe could be instantiated into specific methodologies (by analogy of "object") to guide evaluators in performance evaluation of different software and even computing systems. We also propose a generic validation framework with four indicators (i.e.~usefulness, feasibility, effectiveness and repeatability), and use it to validate DoKnowMe in the Cloud services evaluation domain. Given the positive and promising validation result, we plan to integrate more common evaluation strategies to improve DoKnowMe and further focus on the performance evaluation of Cloud autoscaler systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.