Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Ramsey property for Banach spaces and Choquet simplices

Published 3 Aug 2017 in math.DS, math.FA, math.LO, and math.OA | (1708.01317v3)

Abstract: We show that the Gurarij space $\mathbb{G}$ has extremely amenable automorphism group. This answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the automorphism group of the Poulsen simplex $\mathbb{P}$ and we prove that it consists of the canonical action on $\mathbb{P}$ itself. This answers a question of Conley and T\"{o}rnquist. We show that the pointwise stabilizer of any closed proper face of $\mathbb{P}$ is extremely amenable. Similarly, the pointwise stabilizer of any closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely amenable. These results are obtained via several Kechris-Pestov-Todorcevic correspondences, by establishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces and function systems and their versions with distinguished contractions. This is the first direct application of the Kechris-Pestov-Todorcevic correspondence in the setting of metric structures. The fundamental combinatorial principle that underpins the proofs is the Dual Ramsey Theorem of Graham and Rothschild.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.