Papers
Topics
Authors
Recent
2000 character limit reached

Convexifiability of Continuous and Discrete Nonnegative Quadratic Programs for Gap-Free Duality

Published 29 Jul 2017 in math.OC | (1707.09486v3)

Abstract: In this paper we show that a convexifiability property of nonconvex quadratic programs with nonnegative variables and quadratic constraints guarantees zero duality gap between the quadratic programs and their semi-Lagrangian duals. More importantly, we establish that this convexifiability is hidden in classes of nonnegative homogeneous quadratic programs and discrete quadratic programs, such as mixed integer quadratic programs, revealing zero duality gaps. As an application, we prove that robust counterparts of uncertain mixed integer quadratic programs with objective data uncertainty enjoy zero duality gaps under suitable conditions. Various sufficient conditions for convexifiability are also given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.