Papers
Topics
Authors
Recent
Search
2000 character limit reached

A spectrahedral representation of the first derivative relaxation of the positive semidefinite cone

Published 28 Jul 2017 in math.OC | (1707.09150v2)

Abstract: If $X$ is an $n\times n$ symmetric matrix, then the directional derivative of $X \mapsto \det(X)$ in the direction $I$ is the elementary symmetric polynomial of degree $n-1$ in the eigenvalues of $X$. This is a polynomial in the entries of $X$ with the property that it is hyperbolic with respect to the direction $I$. The corresponding hyperbolicity cone is a relaxation of the positive semidefinite (PSD) cone known as the first derivative relaxation (or Renegar derivative) of the PSD cone. A spectrahedal cone is a convex cone that has a representation as the intersection of a subspace with the cone of PSD matrices in some dimension. We show that the first derivative relaxation of the PSD cone is a spectrahedral cone, and give an explicit spectrahedral description of size $\binom{n+1}{2}-1$. The construction provides a new explicit example of a hyperbolicity cone that is also a spectrahedron. This is consistent with the generalized Lax conjecture, which conjectures that every hyperbolicity cone is a spectrahedron.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.