Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Integrability of Liouville theory: proof of the DOZZ Formula (1707.08785v3)

Published 27 Jul 2017 in math.PR, math-ph, and math.MP

Abstract: Dorn and Otto (1994) and independently Zamolodchikov and Zamolodchikov (1996) proposed a remarkable explicit expression, the so-called DOZZ formula, for the 3 point structure constants of Liouville Conformal Field Theory (LCFT), which is expected to describe the scaling limit of large planar maps properly embedded into the Riemann sphere. In this paper we give a proof of the DOZZ formula based on a rigorous probabilistic construction of LCFT in terms of Gaussian Multiplicative Chaos given earlier by F. David and the authors. This result is a fundamental step in the path to prove integrability of LCFT, i.e. to mathematically justify the methods of Conformal Bootstrap used by physicists. From the purely probabilistic point of view, our proof constitutes the first rigorous integrability result on Gaussian Multiplicative Chaos measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.