Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets

Published 17 Jun 2017 in cs.IT, astro-ph.IM, and math.IT | (1707.08205v2)

Abstract: Because of the vast volume of data being produced by today's scientific simulations, lossy compression allowing user-controlled information loss can significantly reduce the data size and the I/O burden. However, for large-scale cosmology simulation, such as the Hardware/Hybrid Accelerated Cosmology Code (HACC), where memory overhead constraints restrict compression to only one snapshot at a time, the lossy compression ratio is extremely limited because of the fairly low spatial coherence and high irregularity of the data. In this work, we propose a pattern-matching (similarity searching) technique to optimize the prediction accuracy and compression ratio of SZ lossy compressor on the HACC data sets. We evaluate our proposed method with different configurations and compare it with state-of-the-art lossy compressors. Experiments show that our proposed optimization approach can improve the prediction accuracy and reduce the compressed size of quantization codes compared with SZ. We present several lessons useful for future research involving pattern-matching techniques for lossy compression.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.