Approximating predictive probabilities of Gibbs-type priors
Abstract: Gibbs-type random probability measures, or Gibbs-type priors, are arguably the most "natural" generalization of the celebrated Dirichlet prior. Among them the two parameter Poisson-Dirichlet prior certainly stands out for the mathematical tractability and interpretability of its predictive probabilities, which made it the natural candidate in several applications. Given a sample of size $n$, in this paper we show that the predictive probabilities of any Gibbs-type prior admit a large $n$ approximation, with an error term vanishing as $o(1/n)$, which maintains the same desirable features as the predictive probabilities of the two parameter Poisson-Dirichlet prior.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.