Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Asymptotic expansion for solutions of the Navier-Stokes equations with non-potential body forces (1707.07829v2)

Published 25 Jul 2017 in math.AP

Abstract: We study the long-time behavior of spatially periodic solutions of the Navier-Stokes equations in the three-dimensional space. The body force is assumed to possess an asymptotic expansion or, resp., finite asymptotic approximation, in either Sobolev or Gevrey spaces, as time tends to infinity, in terms of polynomial and decaying exponential functions of time. We establish an asymptotic expansion, or resp., finite asymptotic approximation, of the same type for the Leray-Hopf weak solutions. This extends the previous results, obtained in the case of potential forces, to the non-potential force case, where the body force may have different levels of regularity and asymptotic approximation. In fact, our analysis identifies precisely how the structure of the force influences the asymptotic behavior of the solutions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.