Papers
Topics
Authors
Recent
2000 character limit reached

Global regularity for 1D Eulerian dynamics with singular interaction forces

Published 23 Jul 2017 in math.AP | (1707.07296v1)

Abstract: The Euler-Poisson-Alignment (EPA) system appears in mathematical biology and is used to model, in a hydrodynamic limit, a set agents interacting through mutual attraction/repulsion as well as alignment forces. We consider one-dimensional EPA system with a class of singular alignment terms as well as natural attraction/repulsion terms. The singularity of the alignment kernel produces an interesting effect regularizing the solutions of the equation and leading to global regularity for wide range of initial data. This was recently observed in the paper by Do, Kiselev, Ryzhik and Tan. Our goal in this paper is to generalize the result and to incorporate the attractive/repulsive potential. We prove that global regularity persists for these more general models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.