Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting the Gender of Indonesian Names (1707.07129v2)

Published 22 Jul 2017 in cs.CL

Abstract: We investigated a way to predict the gender of a name using character-level Long-Short Term Memory (char-LSTM). We compared our method with some conventional machine learning methods, namely Naive Bayes, logistic regression, and XGBoost with n-grams as the features. We evaluated the models on a dataset consisting of the names of Indonesian people. It is not common to use a family name as the surname in Indonesian culture, except in some ethnicities. Therefore, we inferred the gender from both full names and first names. The results show that we can achieve 92.25% accuracy from full names, while using first names only yields 90.65% accuracy. These results are better than the ones from applying the classical machine learning algorithms to n-grams.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ali Akbar Septiandri (12 papers)
Citations (7)