Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Power maps in finite groups (1707.06696v4)

Published 20 Jul 2017 in math.CO, math.GR, and math.NT

Abstract: In recent work, Pomerance and Shparlinski have obtained results on the number of cycles in the functional graph of the map $x \mapsto xa$ in $\mathbb{F}_p*$. We prove similar results for other families of finite groups. In particular, we obtain estimates for the number of cycles for cyclic groups, symmetric groups, dihedral groups and $SL_2(\mathbb{F}_q)$. We also show that the cyclic group of order $n$ minimizes the number of cycles among all nilpotent groups of order $n$ for a fixed exponent. Finally, we pose several problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.