Some results on the annihilators and attached primes of local cohomology modules (1707.06536v1)
Abstract: Let $(R, \frak m)$ be a local ring and $M$ a finitely generated $R$-module. It is shown that if $M$ is relative Cohen-Macaulay with respect to an ideal $\frak a$ of $R$, then $\text{Ann}R(H{\mathfrak{a}}{\text{cd}(\mathfrak{a}, M)}(M))=\text{Ann}RM/L=\text{Ann}_RM$ and $\text{Ass}_R(R/\text{Ann}_RM)\subseteq {\mathfrak{p} \in \text{Ass}_R M|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})=\text{cd}(\mathfrak{a}, M)},$ where $L$ is the largest submodule of $M$ such that ${\rm cd}(\mathfrak{a}, L)< {\rm cd}(\mathfrak{a}, M)$. We also show that if $H{\dim M}{\mathfrak{a}}(M)=0$, then $\text{Att}R(H{\dim M-1}{\mathfrak{a}}(M))= {\mathfrak{p} \in \text{Supp} (M)|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})=\dim M-1},$ and so the attached primes of $H{\dim M-1}{\mathfrak{a}}(M)$ depends only on $\text{Supp} (M)$. Finally, we prove that if $M$ is an arbitrary module (not necessarily finitely generated) over a Noetherian ring $R$ with ${\rm cd}(\mathfrak{a}, M)={\rm cd}(\mathfrak{a}, R/\text{Ann}_RM)$, then $\text{Att}_R(H{{\rm cd}(\mathfrak{a}, M)}{\mathfrak{a}}(M))\subseteq{\mathfrak{p} \in V(\text{Ann}RM)|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})={\rm cd}(\mathfrak{a}, M)}.$ As a consequence of this it is shown that if $\dim M=\dim R$, then $\text{Att}_R(H{\dim M}{\mathfrak{a}}(M))\subseteq{\mathfrak{p} \in \text{Ass}_R M|\,{\rm cd}(\mathfrak{a}, R/\mathfrak{p})=\dim M}.$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.