Papers
Topics
Authors
Recent
Search
2000 character limit reached

Self-paced Convolutional Neural Network for Computer Aided Detection in Medical Imaging Analysis

Published 19 Jul 2017 in cs.CV, cs.LG, and stat.ML | (1707.06145v1)

Abstract: Tissue characterization has long been an important component of Computer Aided Diagnosis (CAD) systems for automatic lesion detection and further clinical planning. Motivated by the superior performance of deep learning methods on various computer vision problems, there has been increasing work applying deep learning to medical image analysis. However, the development of a robust and reliable deep learning model for computer-aided diagnosis is still highly challenging due to the combination of the high heterogeneity in the medical images and the relative lack of training samples. Specifically, annotation and labeling of the medical images is much more expensive and time-consuming than other applications and often involves manual labor from multiple domain experts. In this work, we propose a multi-stage, self-paced learning framework utilizing a convolutional neural network (CNN) to classify Computed Tomography (CT) image patches. The key contribution of this approach is that we augment the size of training samples by refining the unlabeled instances with a self-paced learning CNN. By implementing the framework on high performance computing servers including the NVIDIA DGX1 machine, we obtained the experimental result, showing that the self-pace boosted network consistently outperformed the original network even with very scarce manual labels. The performance gain indicates that applications with limited training samples such as medical image analysis can benefit from using the proposed framework.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.