Papers
Topics
Authors
Recent
Search
2000 character limit reached

Grounding Spatio-Semantic Referring Expressions for Human-Robot Interaction

Published 18 Jul 2017 in cs.RO, cs.AI, and cs.CL | (1707.05720v1)

Abstract: The human language is one of the most natural interfaces for humans to interact with robots. This paper presents a robot system that retrieves everyday objects with unconstrained natural language descriptions. A core issue for the system is semantic and spatial grounding, which is to infer objects and their spatial relationships from images and natural language expressions. We introduce a two-stage neural-network grounding pipeline that maps natural language referring expressions directly to objects in the images. The first stage uses visual descriptions in the referring expressions to generate a candidate set of relevant objects. The second stage examines all pairwise relationships between the candidates and predicts the most likely referred object according to the spatial descriptions in the referring expressions. A key feature of our system is that by leveraging a large dataset of images labeled with text descriptions, it allows unrestricted object types and natural language referring expressions. Preliminary results indicate that our system outperforms a near state-of-the-art object comprehension system on standard benchmark datasets. We also present a robot system that follows voice commands to pick and place previously unseen objects.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.