Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A hybrid feature selection for network intrusion detection systems: Central points (1707.05505v1)

Published 18 Jul 2017 in cs.CR

Abstract: Network intrusion detection systems are an active area of research to identify threats that face computer networks. Network packets comprise of high dimensions which require huge effort to be examined effectively. As these dimensions contain some irrelevant features, they cause a high False Alarm Rate (FAR). In this paper, we propose a hybrid method as a feature selection, based on the central points of attribute values and an Association Rule Mining algorithm to decrease the FAR. This algorithm is designed to be implemented in a short processing time, due to its dependency on the central points of feature values with partitioning data records into equal parts. This algorithm is applied on the UNSW-NB15 and the NSLKDD data sets to adopt the highest ranked features. Some existing techniques are used to measure the accuracy and FAR. The experimental results show the proposed model is able to improve the accuracy and decrease the FAR. Furthermore, its processing time is extremely short.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.