Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vision-based Real Estate Price Estimation (1707.05489v3)

Published 18 Jul 2017 in cs.CV and cs.LG

Abstract: Since the advent of online real estate database companies like Zillow, Trulia and Redfin, the problem of automatic estimation of market values for houses has received considerable attention. Several real estate websites provide such estimates using a proprietary formula. Although these estimates are often close to the actual sale prices, in some cases they are highly inaccurate. One of the key factors that affects the value of a house is its interior and exterior appearance, which is not considered in calculating automatic value estimates. In this paper, we evaluate the impact of visual characteristics of a house on its market value. Using deep convolutional neural networks on a large dataset of photos of home interiors and exteriors, we develop a method for estimating the luxury level of real estate photos. We also develop a novel framework for automated value assessment using the above photos in addition to home characteristics including size, offered price and number of bedrooms. Finally, by applying our proposed method for price estimation to a new dataset of real estate photos and metadata, we show that it outperforms Zillow's estimates.

Citations (112)

Summary

We haven't generated a summary for this paper yet.