Papers
Topics
Authors
Recent
Search
2000 character limit reached

UrbanFACET: Visually Profiling Cities from Mobile Device Recorded Movement Data of Millions of City Residents

Published 13 Jul 2017 in cs.SI | (1707.04210v1)

Abstract: Cities are living systems where urban infrastructures and their functions are defined and evolved due to population behaviors. Profiling the cities and functional regions has been an important topic in urban design and planning. This paper studies a unique big data set which includes daily movement data of tens of millions of city residents, and develop a visual analytics system, namely UrbanFACET, to discover and visualize the dynamical profiles of multiple cities and their residents. This big user movement data set, acquired from mobile users' agnostic check-ins at thousands of phone APPs, is well utilized in an integrative study and visualization together with urban structure (e.g., road network) and POI (Point of Interest) distributions. In particular, we novelly develop a set of information-theory based metrics to characterize the mobility patterns of city areas and groups of residents. These multifaceted metrics including Fluidity, vibrAncy, Commutation, divErsity, and densiTy (FACET) which categorize and manifest hidden urban functions and behaviors. UrbanFACET system further allows users to visually analyze and compare the metrics over different areas and cities in metropolitan scales. The system is evaluated through both case studies on several big and heavily populated cities, and user studies involving real-world users.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (5)

Collections

Sign up for free to add this paper to one or more collections.