Papers
Topics
Authors
Recent
2000 character limit reached

Biharmonic conformal maps in dimension four and equations of Yamabe-type

Published 11 Jul 2017 in math.DG | (1707.03326v1)

Abstract: We prove that the problem of constructing biharmonic conformal maps on a $4$-dimensional Einstein manifold reduces to a Yamabe-type equation. This allows us to construct an infinite family of examples on the Euclidean 4-sphere. In addition, we characterize all solutions on Euclidean 4-space and show that there exists at least one non-constant proper biharmonic conformal map from any closed Einstein 4-manifold of negative Ricci curvature.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.