2000 character limit reached
Biharmonic conformal maps in dimension four and equations of Yamabe-type (1707.03326v1)
Published 11 Jul 2017 in math.DG
Abstract: We prove that the problem of constructing biharmonic conformal maps on a $4$-dimensional Einstein manifold reduces to a Yamabe-type equation. This allows us to construct an infinite family of examples on the Euclidean 4-sphere. In addition, we characterize all solutions on Euclidean 4-space and show that there exists at least one non-constant proper biharmonic conformal map from any closed Einstein 4-manifold of negative Ricci curvature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.