Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mixing length scales of low temperature spin plaquettes models

Published 10 Jul 2017 in math-ph, cond-mat.stat-mech, math.MP, and math.PR | (1707.03036v1)

Abstract: Plaquette models are short range ferromagnetic spin models that play a key role in the dynamic facilitation approach to the liquid glass transition. In this paper we perform a rigorous study of the thermodynamic properties of two dimensional plaquette models, the square and triangular plaquette models. We prove that for any positive temperature both models have a unique infinite volume Gibbs measure with exponentially decaying correlations. We analyse the scaling of three a priori different static correlation lengths in the small temperature regime, the mixing, cavity and multispin correlation lengths. Finally, using the symmetries of the model we determine an exact self similarity property for the infinite volume Gibbs measure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.