Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anisotropic Diffusion-based Kernel Matrix Model for Face Liveness Detection (1707.02692v1)

Published 10 Jul 2017 in cs.CV

Abstract: Facial recognition and verification is a widely used biometric technology in security system. Unfortunately, face biometrics is vulnerable to spoofing attacks using photographs or videos. In this paper, we present an anisotropic diffusion-based kernel matrix model (ADKMM) for face liveness detection to prevent face spoofing attacks. We use the anisotropic diffusion to enhance the edges and boundary locations of a face image, and the kernel matrix model to extract face image features which we call the diffusion-kernel (D-K) features. The D-K features reflect the inner correlation of the face image sequence. We introduce convolution neural networks to extract the deep features, and then, employ a generalized multiple kernel learning method to fuse the D-K features and the deep features to achieve better performance. Our experimental evaluation on the two publicly available datasets shows that the proposed method outperforms the state-of-art face liveness detection methods.

Citations (18)

Summary

We haven't generated a summary for this paper yet.