Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Min-Max-Delay Problem: NP-completeness, Algorithm, and Integrality Gap

Published 9 Jul 2017 in cs.DS | (1707.02650v4)

Abstract: We study a delay-sensitive information flow problem where a source streams information to a sink over a directed graph G(V,E) at a fixed rate R possibly using multiple paths to minimize the maximum end-to-end delay, denoted as the Min-Max-Delay problem. Transmission over an edge incurs a constant delay within the capacity. We prove that Min-Max-Delay is weakly NP-complete, and demonstrate that it becomes strongly NP-complete if we require integer flow solution. We propose an optimal pseudo-polynomial time algorithm for Min-Max-Delay, with time complexity O(\log (Nd_{\max}) (N5d_{\max}{2.5})(\log R+N2d_{\max}\log(N2d_{\max}))), where N = \max{|V|,|E|} and d_{\max} is the maximum edge delay. Besides, we show that the integrality gap, which is defined as the ratio of the maximum delay of an optimal integer flow to the maximum delay of an optimal fractional flow, could be arbitrarily large.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.