Efficient Context Management and Personalized User Recommendations in a Smart Social TV environment
Abstract: With the emergence of Smart TV and related interconnected devices, second screen solutions have rapidly appeared to provide more content for end-users and enrich their TV experience. Given the various data and sources involved - videos, actors, social media and online databases- the aforementioned market poses great challenges concerning user context management and sophisticated recommendations that can be addressed to the end-users. This paper presents an innovative Context Management model and a related first and second screen recommendation service, based on a user-item graph analysis as well as collaborative filtering techniques in the context of a Dynamic Social & Media Content Syndication (SAM) platform. The model evaluation provided is based on datasets collected online, presenting a comparative analysis concerning efficiency and effectiveness of the current approach, and illustrating its added value.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.