Papers
Topics
Authors
Recent
2000 character limit reached

Central limit theorem and Diophantine approximations

Published 29 Jun 2017 in math.PR | (1706.09643v1)

Abstract: Let $F_n$ denote the distribution function of the normalized sum $Z_n = (X_1 + \dots + X_n)/\sigma\sqrt{n}$ of i.i.d. random variables with finite fourth absolute moment. In this paper, polynomial rates of convergence of $F_n$ to the normal law with respect to the Kolmogorov distance, as well as polynomial approximations of $F_n$ by the Edgeworth corrections (modulo logarithmically growing factors in $n$) are given in terms of the characteristic function of $X_1$. Particular cases of the problem are discussed in connection with Diophantine approximations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.