2000 character limit reached
Central limit theorem and Diophantine approximations
Published 29 Jun 2017 in math.PR | (1706.09643v1)
Abstract: Let $F_n$ denote the distribution function of the normalized sum $Z_n = (X_1 + \dots + X_n)/\sigma\sqrt{n}$ of i.i.d. random variables with finite fourth absolute moment. In this paper, polynomial rates of convergence of $F_n$ to the normal law with respect to the Kolmogorov distance, as well as polynomial approximations of $F_n$ by the Edgeworth corrections (modulo logarithmically growing factors in $n$) are given in terms of the characteristic function of $X_1$. Particular cases of the problem are discussed in connection with Diophantine approximations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.