Infinite Mixture Model of Markov Chains
Abstract: We propose a Bayesian nonparametric mixture model for prediction- and information extraction tasks with an efficient inference scheme. It models categorical-valued time series that exhibit dynamics from multiple underlying patterns (e.g. user behavior traces). We simplify the idea of capturing these patterns by hierarchical hidden Markov models (HHMMs) - and extend the existing approaches by the additional representation of structural information. Our empirical results are based on both synthetic- and real world data. They indicate that the results are easily interpretable, and that the model excels at segmentation and prediction performance: it successfully identifies the generating patterns and can be used for effective prediction of future observations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.