Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Norm-Resolvent Convergence in Perforated Domains (1706.05859v5)

Published 19 Jun 2017 in math.AP, math-ph, and math.MP

Abstract: For several different boundary conditions (Dirichlet, Neumann, Robin), we prove norm-resolvent convergence for the operator $-\Delta$ in the perforated domain $\Omega\setminus \bigcup_{ i\in 2\varepsilon\mathbb Zd }B_{a_\varepsilon}(i),$ $a_\varepsilon\ll\varepsilon,$ to the limit operator $-\Delta+\mu_{\iota}$ on $L2(\Omega)$, where $\mu_\iota\in\mathbb C$ is a constant depending on the choice of boundary conditions. This is an improvement of previous results [Cioranescu & Murat. A Strange Term Coming From Nowhere, Progress in Nonlinear Differential Equations and Their Applications, 31, (1997)], [S. Kaizu. The Robin Problems on Domains with Many Tiny Holes. Pro c. Japan Acad., 61, Ser. A (1985)], which show strong resolvent convergence. In particular, our result implies Hausdorff convergence of the spectrum of the resolvent for the perforated domain problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.