Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized Bouncy Particle Sampler

Published 15 Jun 2017 in stat.CO | (1706.04781v2)

Abstract: As a special example of piecewise deterministic Markov process, bouncy particle sampler is a rejection-free, irreversible Markov chain Monte Carlo algorithm and can draw samples from target distribution efficiently. We generalize bouncy particle sampler in terms of its transition dynamics. In BPS, the transition dynamic at event time is deterministic, but in GBPS, it is random. With the help of this randomness, GBPS can overcome the reducibility problem in BPS without refreshement.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.