Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale YouTube-8M Video Understanding with Deep Neural Networks (1706.04488v1)

Published 14 Jun 2017 in cs.CV

Abstract: Video classification problem has been studied many years. The success of Convolutional Neural Networks (CNN) in image recognition tasks gives a powerful incentive for researchers to create more advanced video classification approaches. As video has a temporal content Long Short Term Memory (LSTM) networks become handy tool allowing to model long-term temporal clues. Both approaches need a large dataset of input data. In this paper three models provided to address video classification using recently announced YouTube-8M large-scale dataset. The first model is based on frame pooling approach. Two other models based on LSTM networks. Mixture of Experts intermediate layer is used in third model allowing to increase model capacity without dramatically increasing computations. The set of experiments for handling imbalanced training data has been conducted.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Manuk Akopyan (2 papers)
  2. Eshsou Khashba (1 paper)
Citations (7)

Summary

We haven't generated a summary for this paper yet.