A quantum Mirković-Vybornov isomorphism (1706.03841v2)
Abstract: We present a quantization of an isomorphism of Mirkovi\'c and Vybornov which relates the intersection of a Slodowy slice and a nilpotent orbit closure in $\mathfrak{gl}_N$ , to a slice between spherical Schubert varieties in the affine Grassmannian of $PGL_n$ (with weights encoded by the Jordan types of the nilpotent orbits). A quantization of the former variety is provided by a parabolic W-algebra and of the latter by a truncated shifted Yangian. Building on earlier work of Brundan and Kleshchev, we define an explicit isomorphism between these non-commutative algebras, and show that its classical limit is a variation of the original isomorphism of Mirkovi\'c and Vybornov. As a corollary, we deduce that the W-algebra is free as a left (or right) module over its Gelfand-Tsetlin subalgebra, as conjectured by Futorny, Molev, and Ovsienko.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.