Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remarks on Tsfasman-Boguslavsky Conjecture and Higher Weights of Projective Reed-Muller Codes (1603.06232v2)

Published 20 Mar 2016 in math.AG, cs.IT, and math.IT

Abstract: Tsfasman-Boguslavsky Conjecture predicts the maximum number of zeros that a system of linearly independent homogeneous polynomials of the same positive degree with coefficients in a finite field can have in the corresponding projective space. We give a self-contained proof to show that this conjecture holds in the affirmative in the case of systems of three homogeneous polynomials, and also to show that the conjecture is false in the case of five quadrics in the 3-dimensional projective space over a finite field. Connections between the Tsfasman-Boguslavsky Conjecture and the determination of generalized Hamming weights of projective Reed-Muller codes are outlined and these are also exploited to show that this conjecture holds in the affirmative in the case of systems of a "large" number of three homogeneous polynomials, and to deduce the counterexample of 5 quadrics. An application to the nonexistence of lines in certain Veronese varieties over finite fields is also included.

Citations (12)

Summary

We haven't generated a summary for this paper yet.