Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CoMaL Tracking: Tracking Points at the Object Boundaries (1706.02331v1)

Published 7 Jun 2017 in cs.CV

Abstract: Traditional point tracking algorithms such as the KLT use local 2D information aggregation for feature detection and tracking, due to which their performance degrades at the object boundaries that separate multiple objects. Recently, CoMaL Features have been proposed that handle such a case. However, they proposed a simple tracking framework where the points are re-detected in each frame and matched. This is inefficient and may also lose many points that are not re-detected in the next frame. We propose a novel tracking algorithm to accurately and efficiently track CoMaL points. For this, the level line segment associated with the CoMaL points is matched to MSER segments in the next frame using shape-based matching and the matches are further filtered using texture-based matching. Experiments show improvements over a simple re-detect-and-match framework as well as KLT in terms of speed/accuracy on different real-world applications, especially at the object boundaries.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.