Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Pragmatic Approach for Measuring Maintainability of DPRA Models (1706.02259v1)

Published 7 Jun 2017 in cs.SE

Abstract: Dynamic Probabilistic Risk Assessment (DPRA) is a powerful concept that is used to evaluate design and safety of complex industrial systems. A DPRA model uses a conceptual system representation as a formal basis for simulation and analysis. In this paper we consider an adaptive maintenance of DPRA models that consist in modifying and extending a simplified model to a real-size DPRA model. We propose an approach for quantitative maintainability assessment of DPRA models created with an industrial modeling tool called PyCATSHOO. We review and adopt some metrics from conceptual modeling, software engineering and OO design for assessing maintainability of PyCATSHOO models. On the example of well-known "Heated Room" test case, we illustrate how the selected metrics can serve as early indicators of model modifiability and complexity. These indicators would allow experts to make better decisions early in the DPRA model development life cycle.

Citations (1)

Summary

We haven't generated a summary for this paper yet.