Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Faster Method to Estimate Closeness Centrality Ranking

Published 7 Jun 2017 in cs.SI and physics.soc-ph | (1706.02083v1)

Abstract: Closeness centrality is one way of measuring how central a node is in the given network. The closeness centrality measure assigns a centrality value to each node based on its accessibility to the whole network. In real life applications, we are mainly interested in ranking nodes based on their centrality values. The classical method to compute the rank of a node first computes the closeness centrality of all nodes and then compares them to get its rank. Its time complexity is $O(n \cdot m + n)$, where $n$ represents total number of nodes, and $m$ represents total number of edges in the network. In the present work, we propose a heuristic method to fast estimate the closeness rank of a node in $O(\alpha \cdot m)$ time complexity, where $\alpha = 3$. We also propose an extended improved method using uniform sampling technique. This method better estimates the rank and it has the time complexity $O(\alpha \cdot m)$, where $\alpha \approx 10-100$. This is an excellent improvement over the classical centrality ranking method. The efficiency of the proposed methods is verified on real world scale-free social networks using absolute and weighted error functions.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.