Papers
Topics
Authors
Recent
Search
2000 character limit reached

Isometric Embeddings into Heisenberg Groups

Published 7 Jun 2017 in math.MG | (1706.02077v1)

Abstract: We study isometric embeddings of a Euclidean space or a Heisenberg group into a higher dimensional Heisenberg group, where both the source and target space are equipped with an arbitrary left-invariant homogeneous distance that is not necessarily sub-Riemannian. We show that if all infinite geodesics in the target are straight lines, then such an embedding must be a homogeneous homomorphism. We discuss a necessary and certain sufficient conditions for the target space to have this `geodesic linearity property', and we provide various examples.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.