Papers
Topics
Authors
Recent
2000 character limit reached

Reduction of Second-Order Network Systems with Structure Preservation (1706.01751v1)

Published 2 Jun 2017 in cs.SY

Abstract: This paper proposes a general framework for structure-preserving model reduction of a secondorder network system based on graph clustering. In this approach, vertex dynamics are captured by the transfer functions from inputs to individual states, and the dissimilarities of vertices are quantified by the H2-norms of the transfer function discrepancies. A greedy hierarchical clustering algorithm is proposed to place those vertices with similar dynamics into same clusters. Then, the reduced-order model is generated by the Petrov-Galerkin method, where the projection is formed by the characteristic matrix of the resulting network clustering. It is shown that the simplified system preserves an interconnection structure, i.e., it can be again interpreted as a second-order system evolving over a reduced graph. Furthermore, this paper generalizes the definition of network controllability Gramian to second-order network systems. Based on it, we develop an efficient method to compute H2-norms and derive the approximation error between the full-order and reduced-order models. Finally, the approach is illustrated by the example of a small-world network.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.