Papers
Topics
Authors
Recent
Search
2000 character limit reached

Specifying a positive threshold function via extremal points

Published 6 Jun 2017 in math.CO and cs.DM | (1706.01747v1)

Abstract: An extremal point of a positive threshold Boolean function $f$ is either a maximal zero or a minimal one. It is known that if $f$ depends on all its variables, then the set of its extremal points completely specifies $f$ within the universe of threshold functions. However, in some cases, $f$ can be specified by a smaller set. The minimum number of points in such a set is the specification number of $f$. It was shown in [S.-T. Hu. Threshold Logic, 1965] that the specification number of a threshold function of $n$ variables is at least $n+1$. In [M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying Boolean functions by labelled examples. Discrete Applied Mathematics, 1995] it was proved that this bound is attained for nested functions and conjectured that for all other threshold functions the specification number is strictly greater than $n+1$. In the present paper, we resolve this conjecture negatively by exhibiting threshold Boolean functions of $n$ variables, which are non-nested and for which the specification number is $n+1$. On the other hand, we show that the set of extremal points satisfies the statement of the conjecture, i.e., a positive threshold Boolean function depending on all its $n$ variables has $n+1$ extremal points if and only if it is nested. To prove this, we reveal an underlying structure of the set of extremal points.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.