Exploring the complexity of layout parameters in tournaments and semi-complete digraphs (1706.00617v1)
Abstract: A simple digraph is semi-complete if for any two of its vertices $u$ and $v$, at least one of the arcs $(u,v)$ and $(v,u)$ is present. We study the complexity of computing two layout parameters of semi-complete digraphs: cutwidth and optimal linear arrangement (OLA). We prove that: (1) Both parameters are $\mathsf{NP}$-hard to compute and the known exact and parameterized algorithms for them have essentially optimal running times, assuming the Exponential Time Hypothesis; (2) The cutwidth parameter admits a quadratic Turing kernel, whereas it does not admit any polynomial kernel unless $\mathsf{NP}\subseteq \mathsf{coNP}/\textrm{poly}$. By contrast, OLA admits a linear kernel. These results essentially complete the complexity analysis of computing cutwidth and OLA on semi-complete digraphs. Our techniques can be also used to analyze the sizes of minimal obstructions for having small cutwidth under the induced subdigraph relation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.