Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gauging (3+1)-dimensional topological phases: an approach from surface theories

Published 2 Jun 2017 in cond-mat.str-el and cond-mat.stat-mech | (1706.00560v1)

Abstract: We discuss several bosonic topological phases in (3+1) dimensions enriched by a global $\mathbb{Z}_2$ symmetry, and gauging the $\mathbb{Z}_2$ symmetry. More specifically, following the spirit of the bulk-boundary correspondence, expected to hold in topological phases of matter in general, we consider boundary (surface) field theories and their orbifold. From the surface partition functions, we extract the modular $\mathcal{S}$ and $\mathcal{T}$ matrices and compare them with $(2+1)$d toplogical phase after dimensional reduction. As a specific example, we discuss topologically ordered phases in $(3+1)$ dimensions described by the BF topological quantum field theories, with abelian exchange statistics between point-like and loop-like quasiparticles. Once the $\mathbb{Z}_2$ charge conjugation symmetry is gauged, the $\mathbb{Z}_2$ flux becomes non-abelian excitation. The gauged topological phases we are considering here belong to the quantum double model with non-abelian group in $(3+1)$ dimensions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.