Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs (1706.00126v4)

Published 31 May 2017 in math.AC and math.CO

Abstract: In this paper we study irreducible representations and symbolic Rees algebras of monomial ideals. Then we examine edge ideals associated to vertex-weighted oriented graphs. These are digraphs having no oriented cycles of length two with weights on the vertices. For a monomial ideal with no embedded primes we classify the normality of its symbolic Rees algebra in terms of its primary components. If the primary components of a monomial ideal are normal, we present a simple procedure to compute its symbolic Rees algebra using Hilbert bases, and give necessary and sufficient conditions for the equality between its ordinary and symbolic powers. We give an effective characterization of the Cohen--Macaulay vertex-weighted oriented forests. For edge ideals of transitive weighted oriented graphs we show that Alexander duality holds. It is shown that edge ideals of weighted acyclic tournaments are Cohen--Macaulay and satisfy Alexander duality

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.