Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

HiNet: Hierarchical Classification with Neural Network (1705.11105v2)

Published 31 May 2017 in cs.LG

Abstract: Traditionally, classifying large hierarchical labels with more than 10000 distinct traces can only be achieved with flatten labels. Although flatten labels is feasible, it misses the hierarchical information in the labels. Hierarchical models like HSVM by \cite{vural2004hierarchical} becomes impossible to train because of the sheer number of SVMs in the whole architecture. We developed a hierarchical architecture based on neural networks that is simple to train. Also, we derived an inference algorithm that can efficiently infer the MAP (maximum a posteriori) trace guaranteed by our theorems. Furthermore, the complexity of the model is only $O(n2)$ compared to $O(nh)$ in a flatten model, where $h$ is the height of the hierarchy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.