Papers
Topics
Authors
Recent
Search
2000 character limit reached

Equidistribution of saddle connections on translation surfaces

Published 30 May 2017 in math.DS and math.GT | (1705.10847v2)

Abstract: Fix a translation surface $X$, and consider the measures on $X$ coming from averaging the uniform measures on all the saddle connections of length at most $R$. Then as $R\to\infty$, the weak limit of these measures exists and is equal to the Lebesgue measure on $X$. We also show that any weak limit of a subsequence of the counting measures on $S1$ given by the angles of all saddle connections of length at most $R_n$, as $R_n\to\infty$, is in the Lebesgue measure class. The proof of the first result uses the second result, together with the result of Kerckhoff-Masur-Smillie that the directional flow on a surface is uniquely ergodic in almost every direction.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.