Equidistribution of saddle connections on translation surfaces
Abstract: Fix a translation surface $X$, and consider the measures on $X$ coming from averaging the uniform measures on all the saddle connections of length at most $R$. Then as $R\to\infty$, the weak limit of these measures exists and is equal to the Lebesgue measure on $X$. We also show that any weak limit of a subsequence of the counting measures on $S1$ given by the angles of all saddle connections of length at most $R_n$, as $R_n\to\infty$, is in the Lebesgue measure class. The proof of the first result uses the second result, together with the result of Kerckhoff-Masur-Smillie that the directional flow on a surface is uniquely ergodic in almost every direction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.