Papers
Topics
Authors
Recent
2000 character limit reached

Stratification as a general variance reduction method for Markov chain Monte Carlo

Published 23 May 2017 in stat.ME, cs.NA, math.NA, and physics.comp-ph | (1705.08445v3)

Abstract: The Eigenvector Method for Umbrella Sampling (EMUS) belongs to a popular class of methods in statistical mechanics which adapt the principle of stratified survey sampling to the computation of free energies. We develop a detailed theoretical analysis of EMUS. Based on this analysis, we show that EMUS is an efficient general method for computing averages over arbitrary target distributions. In particular, we show that EMUS can be dramatically more efficient than direct MCMC when the target distribution is multimodal or when the goal is to compute tail probabilities. To illustrate these theoretical results, we present a tutorial application of the method to a problem from Bayesian statistics.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.