Papers
Topics
Authors
Recent
2000 character limit reached

Exact adaptive confidence intervals for linear regression coefficients

Published 23 May 2017 in stat.ME | (1705.08331v2)

Abstract: We propose an adaptive confidence interval procedure (CIP) for the coefficients in the normal linear regression model. This procedure has a frequentist coverage rate that is constant as a function of the model parameters, yet provides smaller intervals than the usual interval procedure, on average across regression coefficients. The proposed procedure is obtained by defining a class of CIPs that all have exact $1-\alpha$ frequentist coverage, and then selecting from this class the procedure that minimizes a prior expected interval width. Such a procedure may be described as "frequentist, assisted by Bayes" or FAB. We describe an adaptive approach for estimating the prior distribution from the data so that exact non-asymptotic $1-\alpha$ coverage is maintained. Additionally, in a "$p$ growing with $n$" asymptotic scenario, this adaptive FAB procedure is asymptotically Bayes-optimal among $1-\alpha$ frequentist CIPs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.