Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Invariant Model of the Significance of Different Body Parts in Recognizing Different Actions (1705.08293v1)

Published 22 May 2017 in cs.CV

Abstract: In this paper, we show that different body parts do not play equally important roles in recognizing a human action in video data. We investigate to what extent a body part plays a role in recognition of different actions and hence propose a generic method of assigning weights to different body points. The approach is inspired by the strong evidence in the applied perception community that humans perform recognition in a foveated manner, that is they recognize events or objects by only focusing on visually significant aspects. An important contribution of our method is that the computation of the weights assigned to body parts is invariant to viewing directions and camera parameters in the input data. We have performed extensive experiments to validate the proposed approach and demonstrate its significance. In particular, results show that considerable improvement in performance is gained by taking into account the relative importance of different body parts as defined by our approach.

Summary

We haven't generated a summary for this paper yet.