Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hodge theory in combinatorics (1705.07960v2)

Published 22 May 2017 in math.CO and math.AG

Abstract: George Birkhoff proved in 1912 that the number of proper colorings of a finite graph G with n colors is a polynomial in n, called the chromatic polynomial of G. Read conjectured in 1968 that for any graph G, the sequence of absolute values of coefficients of the chromatic polynomial is unimodal: it goes up, hits a peak, and then goes down. Read's conjecture was proved by June Huh in a 2012 paper making heavy use of methods from algebraic geometry. Huh's result was subsequently refined and generalized by Huh and Katz, again using substantial doses of algebraic geometry. Both papers in fact establish log-concavity of the coefficients, which is stronger than unimodality. The breakthroughs of Huh and Huh-Katz left open the more general Rota-Welsh conjecture where graphs are generalized to (not necessarily representable) matroids and the chromatic polynomial of a graph is replaced by the characteristic polynomial of a matroid. The Huh and Huh-Katz techniques are not applicable in this level of generality, since there is no underlying algebraic geometry to which to relate the problem. But in 2015 Adiprasito, Huh, and Katz announced a proof of the Rota-Welsh conjecture based on a novel approach motivated by but not making use of any results from algebraic geometry. The authors first prove that the Rota-Welsh conjecture would follow from combinatorial analogues of the Hard Lefschetz Theorem and Hodge-Riemann relations in algebraic geometry. They then implement an elaborate inductive procedure to prove the combinatorial Hard Lefschetz Theorem and Hodge-Riemann relations using purely combinatorial arguments. We will survey these developments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.