Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Identifiability of phylogenetic parameters from k-mer data under the coalescent (1705.06993v1)

Published 19 May 2017 in q-bio.PE and math.AG

Abstract: Distances between sequences based on their $k$-mer frequency counts can be used to reconstruct phylogenies without first computing a sequence alignment. Past work has shown that effective use of k-mer methods depends on 1) model-based corrections to distances based on $k$-mers and 2) breaking long sequences into blocks to obtain repeated trials from the sequence-generating process. Good performance of such methods is based on having many high-quality blocks with many homologous sites, which can be problematic to guarantee a priori. Nature provides natural blocks of sequences into homologous regions---namely, the genes. However, directly using past work in this setting is problematic because of possible discordance between different gene trees and the underlying species tree. Using the multispecies coalescent model as a basis, we derive model-based moment formulas that involve the divergence times and the coalescent parameters. From this setting, we prove identifiability results for the tree and branch length parameters under the Jukes-Cantor model of sequence mutations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube