z-Classes and Rational Conjugacy Classes in Alternating Groups
Abstract: In this paper, we compute the number of z-classes (conjugacy classes of centralizers of elements) in the symmetric group S_n, when n is greater or equal to 3 and alternating group A_n, when n is greater or equal to 4. It turns out that the difference between the number of conjugacy classes and the number of z-classes for S_n is determined by those restricted partitions of n-2 in which 1 and 2 do not appear as its part. And, in the case of alternating groups, it is determined by those restricted partitions of n-3 which has all its parts distinct, odd and in which 1 (and 2) does not appear as its part, along with an error term. The error term is given by those partitions of n which have each of its part distinct, odd and perfect square. Further, we prove that the number of rational-valued irreducible complex characters for A_n is same as the number of conjugacy classes which are rational.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.